Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Integer Coefficient Search for Compute-and-Forward (1609.05490v1)

Published 18 Sep 2016 in cs.IT and math.IT

Abstract: Integer coefficient selection is an important decoding step in the implementation of compute-and-forward (C-F) relaying scheme. Choosing the optimal integer coefficients in C-F has been shown to be a shortest vector problem (SVP) which is known to be NP hard in its general form. Exhaustive search of the integer coefficients is only feasible in complexity for small number of users while approximation algorithms such as Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm only find a vector within an exponential factor of the shortest vector. An optimal deterministic algorithm was proposed for C-F by Sahraei and Gastpar specifically for the real valued channel case. In this paper, we adapt their idea to the complex valued channel and propose an efficient search algorithm to find the optimal integer coefficient vectors over the ring of Gaussian integers and the ring of Eisenstein integers. A second algorithm is then proposed that generalises our search algorithm to the Integer-Forcing MIMO C-F receiver. Performance and efficiency of the proposed algorithms are evaluated through simulations and theoretical analysis.

Citations (18)

Summary

We haven't generated a summary for this paper yet.