Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Complexity Coefficient Selection Algorithms for Compute-and-Forward (1704.05007v1)

Published 17 Apr 2017 in cs.IT and math.IT

Abstract: Compute-and-Forward (C&F) has been proposed as an efficient strategy to reduce the backhaul load for the distributed antenna systems. Finding the optimal coefficients in C&F has commonly been treated as a shortest vector problem (SVP), which is N-P hard. The point of our work and of Sahraei's recent work is that the C&F coefficient problem can be much simpler. Due to the special structure of C&F, some low polynomial complexity optimal algorithms have recently been developed. However these methods can be applied to real valued channels and integer based lattices only. In this paper, we consider the complex valued channel with complex integer based lattices. For the first time, we propose a low polynomial complexity algorithm to find the optimal solution for the complex scenario. Then we propose a simple linear search algorithm which is conceptually suboptimal, however numerical results show that the performance degradation is negligible compared to the optimal method. Both algorithms are suitable for lattices over any algebraic integers, and significantly outperform the lattice reduction algorithm. The complexity of both algorithms are investigated both theoretically and numerically. The results show that our proposed algorithms achieve better performance-complexity trade-offs compared to the existing algorithms.

Citations (13)

Summary

We haven't generated a summary for this paper yet.