Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploration Potential (1609.04994v3)

Published 16 Sep 2016 in cs.LG and cs.AI

Abstract: We introduce exploration potential, a quantity that measures how much a reinforcement learning agent has explored its environment class. In contrast to information gain, exploration potential takes the problem's reward structure into account. This leads to an exploration criterion that is both necessary and sufficient for asymptotic optimality (learning to act optimally across the entire environment class). Our experiments in multi-armed bandits use exploration potential to illustrate how different algorithms make the tradeoff between exploration and exploitation.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)