Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transference for the Erdős-Ko-Rado theorem (1609.01001v2)

Published 5 Sep 2016 in math.CO

Abstract: For natural numbers $n,r \in \mathbb{N}$ with $n\ge r$, the Kneser graph $K(n,r)$ is the graph on the family of $r$-element subsets of ${1,\dots,n}$ in which two sets are adjacent if and only if they are disjoint. Delete the edges of $K(n,r)$ with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? We answer this question affirmatively as long as $r/n$ is bounded away from $1/2$, even when the probability of retaining an edge of the Kneser graph is quite small. This gives us a random analogue of the Erd\H{o}s-Ko-Rado theorem since an independent set in the Kneser graph is the same as a uniform intersecting family. To prove our main result, we give some new estimates for the number of disjoint pairs in a family in terms of its distance from an intersecting family, these might be of independent interest.

Summary

We haven't generated a summary for this paper yet.