Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp threshold for the Erdős-Ko-Rado theorem (2105.02985v3)

Published 6 May 2021 in math.CO

Abstract: For positive integers $n$ and $k$ with $n\geq 2k+1$, the Kneser graph $K(n,k)$ is the graph with vertex set consisting of all $k$-sets of ${1,\dots,n}$, where two $k$-sets are adjacent exactly when they are disjoint. The independent sets of $K(n,k)$ are $k$-uniform intersecting families, and hence the maximum size independent sets are given by the Erd\H{o}s-Ko-Rado Theorem. Let $K_p(n,k)$ be a random spanning subgraph of $K(n,k)$ where each edge is included independently with probability $p$. Bollob\'as, Narayanan, and Raigorodskii asked for what $p$ does $K_p(n,k)$ have the same independence number as $K(n,k)$ with high probability. For $n=2k+1$, we prove a hitting time result, which gives a sharp threshold for this problem at $p=3/4$. Additionally, completing work of Das and Tran and work of Devlin and Kahn, we determine a sharp threshold function for all $n>2k+1$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.