Extremes of $q$-Ornstein-Uhlenbeck processes (1609.00338v2)
Abstract: The $q$-Ornstein-Uhlenbeck processes, $q\in(-1,1)$, are a family of stationary Markov processes that converge weakly to the standard Ornstein-Uhlenbeck process as $q$ tends to 1. It has been noticed recently that in terms of path properties, however, for each $q$ fixed the $q$-Ornstein-Uhlenbeck process behaves qualitatively different from their Gaussian counterpart in several aspects. Here, two limit theorems on the extremes of $q$-Ornstein-Uhlenbeck processes are established. Both results are based on the weak convergence of the tangent process at the lower boundary, a positive self-similar Markov process little investigated so far in the literature. The first result is the asymptotic excursion probability established by the double-sum method, with an explicit formula for the Pickands constant in this context. The second result is a Brown-Resnick-type limit theorem on the minimum process of i.i.d. copies. With appropriate scalings in both time and magnitude, a new semi-min-stable process arises in the limit.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.