Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extremes of $q$-Ornstein-Uhlenbeck processes (1609.00338v2)

Published 1 Sep 2016 in math.PR

Abstract: The $q$-Ornstein-Uhlenbeck processes, $q\in(-1,1)$, are a family of stationary Markov processes that converge weakly to the standard Ornstein-Uhlenbeck process as $q$ tends to 1. It has been noticed recently that in terms of path properties, however, for each $q$ fixed the $q$-Ornstein-Uhlenbeck process behaves qualitatively different from their Gaussian counterpart in several aspects. Here, two limit theorems on the extremes of $q$-Ornstein-Uhlenbeck processes are established. Both results are based on the weak convergence of the tangent process at the lower boundary, a positive self-similar Markov process little investigated so far in the literature. The first result is the asymptotic excursion probability established by the double-sum method, with an explicit formula for the Pickands constant in this context. The second result is a Brown-Resnick-type limit theorem on the minimum process of i.i.d. copies. With appropriate scalings in both time and magnitude, a new semi-min-stable process arises in the limit.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)