Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Brochette percolation (1608.04963v2)

Published 17 Aug 2016 in math.PR

Abstract: We study bond percolation on the square lattice with one-dimensional inhomogeneities. Inhomogeneities are introduced in the following way: A vertical column on the square lattice is the set of vertical edges that project to the same vertex on $\mathbb{Z}$. Select vertical columns at random independently with a given positive probability. Keep (respectively remove) vertical edges in the selected columns, with probability $p$, (respectively $1-p$). All horizontal edges and vertical edges lying in unselected columns are kept (respectively removed) with probability $q$, (respectively $1-q$). We show that, if $p > p_c(\mathbb{Z}2)$ (the critical point for homogeneous Bernoulli bond percolation) then $q$ can be taken strictly smaller then $p_c(\mathbb{Z}2)$ in such a way that the probability that the origin percolates is still positive.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.