Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization of certain odd-dimensional manifolds with torus actions (1608.04392v5)

Published 15 Aug 2016 in math.AT

Abstract: Let a torus $T$ act smoothly on a compact smooth manifold $M$. If the rational equivariant cohomology $H*_T(M)$ is a free $H*_T(pt)$-module, then according to the Chang-Skjelbred Lemma, it can be determined by the $1$-skeleton consisting of the $T$-fixed points and $1$-dimensional $T$-orbits of $M$. When $M$ is an even-dimensional, orientable manifold with 2-dimensional 1-skeleton, Goresky, Kottwitz and MacPherson gave a graphic description of the equivariant cohomology. In this paper, first we revisit the even-dimensional GKM theory and introduce a notion of GKM covering, then we consider the case when $M$ is an odd-dimensional, possibly non-orientable manifold with $3$-dimensional $1$-skeleton, and give a graphic description of its equivariant cohomology.

Summary

We haven't generated a summary for this paper yet.