Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How is a graph not like a manifold? (2203.10641v2)

Published 20 Mar 2022 in math.AT and math.KT

Abstract: For an equivariantly formal action of a compact torus $T$ on a smooth manifold $X$ with isolated fixed points we investigate the global homological properties of the graded poset $S(X)$ of face submanifolds. We prove that the condition of $j$-independency of tangent weights at each fixed point implies $(j+1)$-acyclicity of the skeleta $S(X)_r$ for $r>j+1$. This result provides a necessary topological condition for a GKM graph to be a GKM graph of some GKM manifold. We use particular acyclicity arguments to describe the equivariant cohomology algebra of an equivariantly formal manifold of dimension $2n$ with an $(n-1)$-independent action of $(n-1)$-dimensional torus, under certain colorability assumptions on its GKM graph. This description relates the equivariant cohomology algebra to the face algebra of a simplicial poset. Such observation underlines certain similarity between actions of complexity one and torus manifolds.

Summary

We haven't generated a summary for this paper yet.