How is a graph not like a manifold?
Abstract: For an equivariantly formal action of a compact torus $T$ on a smooth manifold $X$ with isolated fixed points we investigate the global homological properties of the graded poset $S(X)$ of face submanifolds. We prove that the condition of $j$-independency of tangent weights at each fixed point implies $(j+1)$-acyclicity of the skeleta $S(X)_r$ for $r>j+1$. This result provides a necessary topological condition for a GKM graph to be a GKM graph of some GKM manifold. We use particular acyclicity arguments to describe the equivariant cohomology algebra of an equivariantly formal manifold of dimension $2n$ with an $(n-1)$-independent action of $(n-1)$-dimensional torus, under certain colorability assumptions on its GKM graph. This description relates the equivariant cohomology algebra to the face algebra of a simplicial poset. Such observation underlines certain similarity between actions of complexity one and torus manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.