Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures (1608.03881v6)

Published 12 Aug 2016 in math.DS, cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: In this work we study the Ruelle Operator associated to a continuous potential defined on a countable product of a compact metric space. We prove a generalization of Bowen's criterion for the uniqueness of the eigenmeasures. One of the main results of the article is to show that a probability is DLR-Gibbs (associated to a continuous translation invariant specification), if and only if, is an eigenprobability for the transpose of the Ruelle operator. Bounded extensions of the Ruelle operator to the Lebesgue space of integrable functions, with respect to the eigenmeasures, are studied and the problem of existence of maximal positive eigenfunctions for them is considered. One of our main results in this direction is the existence of such positive eigenfunctions for Bowen's potential in the setting of a compact and metric alphabet. We also present

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.