Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Perceptual Reward Functions (1608.03824v1)

Published 12 Aug 2016 in cs.AI

Abstract: Reinforcement learning problems are often described through rewards that indicate if an agent has completed some task. This specification can yield desirable behavior, however many problems are difficult to specify in this manner, as one often needs to know the proper configuration for the agent. When humans are learning to solve tasks, we often learn from visual instructions composed of images or videos. Such representations motivate our development of Perceptual Reward Functions, which provide a mechanism for creating visual task descriptions. We show that this approach allows an agent to learn from rewards that are based on raw pixels rather than internal parameters.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.