Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-source Hierarchical Prediction Consolidation (1608.03344v1)

Published 11 Aug 2016 in cs.DB and cs.LG

Abstract: In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Because of the imperfect predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations for many real-world cases like protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The proposed method captures the smoothness overall information sources as well as penalizing any consolidation result that violates the constraints derived from the label hierarchy. The hierarchical instance similarity, as well as the consolidation result, are inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world datasets show the effectiveness of the proposed method over existing alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Chenwei Zhang (60 papers)
  2. Sihong Xie (37 papers)
  3. Yaliang Li (117 papers)
  4. Jing Gao (99 papers)
  5. Wei Fan (160 papers)
  6. Philip S. Yu (592 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.