Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions (1608.00958v3)

Published 2 Aug 2016 in math-ph, hep-th, math.MP, and nlin.SI

Abstract: We derive Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems with $n$ regular singular points on the Riemann sphere and generic monodromy in $\mathrm{GL}(N,\mathbb C)$. The corresponding operator acts in the direct sum of $N(n-3)$ copies of $L2(S1)$. Its kernel has a block integrable form and is expressed in terms of fundamental solutions of $n-2$ elementary 3-point Fuchsian systems whose monodromy is determined by monodromy of the relevant $n$-point system via a decomposition of the punctured sphere into pairs of pants. For $N=2$ these building blocks have hypergeometric representations, the kernel becomes completely explicit and has Cauchy type. In this case Fredholm determinant expansion yields multivariate series representation for the tau function of the Garnier system, obtained earlier via its identification with Fourier transform of Liouville conformal block (or a dual Nekrasov-Okounkov partition function). Further specialization to $n=4$ gives a series representation of the general solution to Painlev\'e VI equation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube