Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations (1608.00710v1)

Published 2 Aug 2016 in math.PR

Abstract: Limit theorems for non-additive probabilities or non-linear expectations are challenging issues which have raised progressive interest recently. The purpose of this paper is to study the strong law of large numbers and the law of the iterated logarithm for a sequence of random variables in a sub-linear expectation space under a concept of extended independence which is much weaker and easier to verify than the independence proposed by Peng (2008b). We introduce a concept of extended negative dependence which is an extension of this kind of weak independence and the extended negative independence relative to classical probability appeared in recent literatures. Powerful tools as the moment inequality and Kolmogorov's exponential inequality are established for this kind of extended negatively independent random variables, which improve those of Chen, Chen and Ng(2010) a lot. And the strong law of large numbers and the law of iterated logarithm are obtained by applying these inequalities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.