Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Can Active Learning Experience Be Transferred? (1608.00667v1)

Published 2 Aug 2016 in cs.LG and cs.AI

Abstract: Active learning is an important machine learning problem in reducing the human labeling effort. Current active learning strategies are designed from human knowledge, and are applied on each dataset in an immutable manner. In other words, experience about the usefulness of strategies cannot be updated and transferred to improve active learning on other datasets. This paper initiates a pioneering study on whether active learning experience can be transferred. We first propose a novel active learning model that linearly aggregates existing strategies. The linear weights can then be used to represent the active learning experience. We equip the model with the popular linear upper- confidence-bound (LinUCB) algorithm for contextual bandit to update the weights. Finally, we extend our model to transfer the experience across datasets with the technique of biased regularization. Empirical studies demonstrate that the learned experience not only is competitive with existing strategies on most single datasets, but also can be transferred across datasets to improve the performance on future learning tasks.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.