Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent fuzzy geometry and fuzzy physics in $4$ dimensions (1607.08296v2)

Published 28 Jul 2016 in hep-th and hep-lat

Abstract: A detailed Monte Carlo calculation of the phase diagram of bosonic IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a noncommutative $U(1)$ gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres ${\bf S}2_N$ and ${\bf S}2_N\times{\bf S}2_N$ respectively. The three and six matrix models are in the same universality class with some differences. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit $M\longrightarrow \infty$, where $M$ is the mass of the normal fluctuations. The behavior of the eigenvalue distribution in the two theories is also different. We also sketch how we can obtain a stable fuzzy four-sphere ${\bf S}2_N\times{\bf S}2_N$ in the large $N$ limit for all values of $M$ as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.

Summary

We haven't generated a summary for this paper yet.