Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Supersymmetry on Emergent Geometry in Yang-Mills Matrix Models II (1206.6375v2)

Published 27 Jun 2012 in hep-th, gr-qc, hep-lat, math-ph, and math.MP

Abstract: We present a study of D=4 supersymmetric Yang-Mills matrix models with SO(3) mass terms based on the Monte Carlo method. In the bosonic models we show the existence of an exotic first/second order transition from a phase with a well defined background geometry (the fuzzy sphere) to a phase with commuting matrices with no geometry in the sense of Connes. At the transition point the sphere expands abruptly to infinite size then it evaporates as we increase the temperature (the gauge coupling constant). The transition looks first order due to the discontinuity in the action whereas it looks second order due to the divergent peak in the specific heat. The fuzzy sphere is stable for the supersymmetric models in the sense that the bosonic phase transition is turned into a very slow crossover transition. The transition point is found to scale to zero with N. We conjecture that the transition from the background sphere to the phase of commuting matrices is associated with spontaneous supersymmetry breaking. The eigenvalues distribution of any of the bosonic matrices in the matrix phase is found to be given by a non-polynomial law obtained from the fact that the joint probability distribution of the four matrices is uniform inside a solid ball with radius R. The eigenvalues of the gauge field on the background geometry are also found to be distributed according to this non-polynomial law.

Summary

We haven't generated a summary for this paper yet.