Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of Compact Metric Space in Terms of Gromov-Hausdorff Distances to Regular Simplexes (1607.06655v1)

Published 22 Jul 2016 in math.MG

Abstract: In the present paper we investigate geometric characteristics of compact metric spaces, which can be described in terms of Gromov-Hausdorff distances to simplexes, i.e., to finite metric spaces such that all their nonzero distances are equal to each other. It turns out that these Gromov-Hausdorff distances depend on some geometrical characteristics of finite partitions of the compact metric spaces; some of the characteristics can be considered as a natural analogue of the lengths of edges of minimum spanning trees. As a consequence, we constructed an unexpected example of a continuum family of pairwise non-isometric finite metric spaces with the same distances to all simplexes.

Summary

We haven't generated a summary for this paper yet.