Papers
Topics
Authors
Recent
2000 character limit reached

Gromov--Hausdorff Distance to Simplexes

Published 23 Jun 2019 in math.MG and math.FA | (1906.09644v1)

Abstract: Geometric characteristics of metric spaces that appear in formulas of the Gromov--Hausdorff distances from these spaces to so-called simplexes, i.e., to the metric spaces, all whose non-zero distances are the same are studied. The corresponding calculations essentially use geometry of partitions of these spaces. In the finite case, it gives the lengths of minimal spanning trees. A similar theory for compact metric spaces was worked out previously. In the present paper we generalize those results to any bounded metric space, and also, we simplify some proofs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.