Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbol $p$-Algebras of Prime Degree and their $p$-Central Subspaces (1607.05243v2)

Published 18 Jul 2016 in math.RA

Abstract: We prove that the maximal dimension of a $p$-central subspace of the generic symbol $p$-algebra of prime degree $p$ is $p+1$. We do it by proving the following number theoretic fact: let ${s_1,\dots,s_{p+1}}$ be $p+1$ distinct nonzero elements in the additive group $G=(\mathbb{Z}/p \mathbb{Z}) \times (\mathbb{Z}/p \mathbb{Z})$; then every nonzero element $g \in G$ can be expressed as $d_1 s_1+\dots+d_{p+1} s_{p+1}$ for some non-negative integers $d_1,\dots,d_{p+1}$ with $d_1+\dots+d_{p+1} \leq p-1$.

Summary

We haven't generated a summary for this paper yet.