A quantum version of the algebra of distributions of $\operatorname{SL}_2$ (1607.04869v3)
Abstract: Let $\lambda$ be a primitive root of unity of order $\ell$. We introduce a family of finite-dimensional algebras ${\mathcal{D}{\lambda,N}(\mathfrak{sl}_2)}{N\in\mathbb{N}0}$ over the complex numbers, such that $\mathcal{D}{\lambda,N}(\mathfrak{sl}2)$ is a subalgebra of $\mathcal{D}{\lambda,M}(\mathfrak{sl}2)$ if $N<M$, and $\mathcal{D}{\lambda,N-1}(\mathfrak{sl}2)\subset \mathcal{D}{\lambda,N}(\mathfrak{sl}2)$ is a $\mathfrak{u}{\lambda}(\mathfrak{sl}2)$-cleft extension. The simple $\mathcal{D}{\lambda,N}(\mathfrak{sl}2)$-modules $(\mathcal{L}{N}(p)){0\le p<\ell{N+1}}$ are highest weight modules, which admit a tensor product decomposition: the first factor is a simple $\mathfrak{u}{\lambda}(\mathfrak{sl}2)$-module and the second factor is a simple $\mathcal{D}{\lambda,N-1}(\mathfrak{sl}_2)$-module. This factorization resembles the corresponding Steinberg decomposition, and the family of algebras resembles the presentation of algebra of distributions of $\operatorname{SL}_2$ as a filtration by finite-dimensional subalgebras.