Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Connection Behind the Terwilliger Algebras of $H(D,2)$ and $\frac{1}{2} H(D,2)$ (2210.15733v2)

Published 27 Oct 2022 in math.CO and math.RT

Abstract: The universal enveloping algebra $U(\mathfrak{sl}_2)$ of $\mathfrak{sl}_2$ is a unital associative algebra over $\mathbb C$ generated by $E,F,H$ subject to the relations \begin{align*} [H,E]=2E, \qquad [H,F]=-2F, \qquad [E,F]=H. \end{align*} The distinguished central element $$ \Lambda=EF+FE+\frac{H2}{2} $$ is called the Casimir element of $U(\mathfrak{sl}_2)$. The universal Hahn algebra $\mathcal H$ is a unital associative algebra over $\mathbb C$ with generators $A,B,C$ and the relations assert that $[A,B]=C$ and each of \begin{align*} \alpha=[C,A]+2A2+B, \qquad \beta=[B,C]+4BA+2C \end{align*} is central in $\mathcal H$. The distinguished central element $$ \Omega=4ABA+B2-C2-2\beta A+2(1-\alpha)B $$ is called the Casimir element of $\mathcal H$. By investigating the relationship between the Terwilliger algebras of the hypercube and its halved graph, we discover the algebra homomorphism $\natural:\mathcal H\rightarrow U(\mathfrak{sl}_2)$ that sends \begin{eqnarray*} A &\mapsto & \frac{H}{4}, \ B & \mapsto & \frac{E2+F2+\Lambda-1}{4}-\frac{H2}{8}, \ C & \mapsto & \frac{E2-F2}{4}. \end{eqnarray*} We determine the image of $\natural$ and show that the kernel of $\natural$ is the two-sided ideal of $\mathcal H$ generated by $\beta$ and $16 \Omega-24 \alpha+3$. By pulling back via $\natural$ each $U(\mathfrak{sl}_2)$-module can be regarded as an $\mathcal H$-module. For each integer $n\geq 0$ there exists a unique $(n+1)$-dimensional irreducible $U(\mathfrak{sl}_2)$-module $L_n$ up to isomorphism. We show that the $\mathcal H$-module $L_n$ ($n\geq 1$) is a direct sum of two non-isomorphic irreducible $\mathcal H$-modules.

Summary

We haven't generated a summary for this paper yet.