Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algebraic construction of spherical harmonics (1607.02585v3)

Published 9 Jul 2016 in quant-ph

Abstract: The angular wave functions for a hydrogen atom are well known to be spherical harmonics, and are obtained as the solutions of a partial differential equation. However, the differential operator is given by the Casimir operator of the $SU(2)$ algebra and its eigenvalue $l(l+1) \hbar2$, where $l$ is non-negative integer, is easily obtained by an algebraic method. Therefore the shape of the wave function may also be obtained by extending the algebraic method. In this paper, we describe the method and show that wave functions with different quantum numbers are connected by a rotational group in the cases of $l=0$, 1 and 2.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)