Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diophantine equations in moderately many variables (1607.01588v1)

Published 6 Jul 2016 in math.NT

Abstract: We give upper bounds for the number of integral solutions of bounded height to a system of equations $f_i(x_1,\ldots,x_n) = 0$, $1 \leq i \leq r$, where the $f_i$ are polynomials with integer coefficients. The estimates are obtained by generalising an approach due to Heath-Brown, using a certain $q$-analogue of van der Corput's method, to the case of systems of polynomials of differing degree. Our results apply for a wider range of $n$, in terms of the degrees of the polynomials $f_i$, than bounds obtained with the circle method.

Summary

We haven't generated a summary for this paper yet.