Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Results on Diophantine Equations in Many Variables (1709.05126v2)

Published 15 Sep 2017 in math.NT

Abstract: We consider a system of integer polynomials of the same degree with non-singular local zeros and in many variables. Generalising the work of Birch (1962) we find quantitative asymptotics (in terms of the maximum of the absolute value of the coefficients of these polynomials) for the number of integer zeros of this system within a growing box. Using a quantitative version of the Nullstellensatz, we obtain a quantitative strong approximation result, i.e. an upper bound on the smallest integer zero provided the system of polynomials is non-singular.

Summary

We haven't generated a summary for this paper yet.