Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets (1607.01354v1)

Published 22 Mar 2016 in cs.LG and stat.ML

Abstract: As machine learning is applied to an increasing variety of complex problems, which are defined by high dimensional and complex data sets, the necessity for task oriented feature learning grows in importance. With the advancement of Deep Learning algorithms, various successful feature learning techniques have evolved. In this paper, we present a novel way of learning discriminative features by training Deep Neural Nets which have Encoder or Decoder type architecture similar to an Autoencoder. We demonstrate that our approach can learn discriminative features which can perform better at pattern classification tasks when the number of training samples is relatively small in size.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.