Discriminative Autoencoder for Feature Extraction: Application to Character Recognition (1912.12131v1)
Abstract: Conventionally, autoencoders are unsupervised representation learning tools. In this work, we propose a novel discriminative autoencoder. Use of supervised discriminative learning ensures that the learned representation is robust to variations commonly encountered in image datasets. Using the basic discriminating autoencoder as a unit, we build a stacked architecture aimed at extracting relevant representation from the training data. The efficiency of our feature extraction algorithm ensures a high classification accuracy with even simple classification schemes like KNN (K-nearest neighbor). We demonstrate the superiority of our model for representation learning by conducting experiments on standard datasets for character/image recognition and subsequent comparison with existing supervised deep architectures like class sparse stacked autoencoder and discriminative deep belief network.
Collections
Sign up for free to add this paper to one or more collections.