Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 479 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Discriminative Autoencoder for Feature Extraction: Application to Character Recognition (1912.12131v1)

Published 11 Dec 2019 in cs.CV and cs.LG

Abstract: Conventionally, autoencoders are unsupervised representation learning tools. In this work, we propose a novel discriminative autoencoder. Use of supervised discriminative learning ensures that the learned representation is robust to variations commonly encountered in image datasets. Using the basic discriminating autoencoder as a unit, we build a stacked architecture aimed at extracting relevant representation from the training data. The efficiency of our feature extraction algorithm ensures a high classification accuracy with even simple classification schemes like KNN (K-nearest neighbor). We demonstrate the superiority of our model for representation learning by conducting experiments on standard datasets for character/image recognition and subsequent comparison with existing supervised deep architectures like class sparse stacked autoencoder and discriminative deep belief network.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.