Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Intrinsic Subspace Evaluation of Word Embedding Representations (1606.07902v1)

Published 25 Jun 2016 in cs.CL

Abstract: We introduce a new methodology for intrinsic evaluation of word representations. Specifically, we identify four fundamental criteria based on the characteristics of natural language that pose difficulties to NLP systems; and develop tests that directly show whether or not representations contain the subspaces necessary to satisfy these criteria. Current intrinsic evaluations are mostly based on the overall similarity or full-space similarity of words and thus view vector representations as points. We show the limits of these point-based intrinsic evaluations. We apply our evaluation methodology to the comparison of a count vector model and several neural network models and demonstrate important properties of these models.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.