Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Constructing and proving the ground state of a generalized Ising model by the cluster tree optimization algorithm (1606.07429v1)

Published 23 Jun 2016 in cond-mat.stat-mech, cond-mat.dis-nn, and physics.comp-ph

Abstract: Generalized Ising models, also known as cluster expansions, are an important tool in many areas of condensed-matter physics and materials science, as they are often used in the study of lattice thermodynamics, solid-solid phase transitions, magnetic and thermal properties of solids, and fluid mechanics. However, the problem of finding the global ground state of generalized Ising model has remained unresolved, with only a limited number of results for simple systems known. We propose a method to efficiently find the periodic ground state of a generalized Ising model of arbitrary complexity by a new algorithm which we term cluster tree optimization. Importantly, we are able to show that even in the case of an aperiodic ground state, our algorithm produces a sequence of states with energy converging to the true ground state energy, with a provable bound on error. Compared to the current state-of-the-art polytope method, this algorithm eliminates the necessity of introducing an exponential number of variables to counter frustration, and thus significantly improves tractability. We believe that the cluster tree algorithm offers an intuitive and efficient approach to finding and proving ground states of generalized Ising Hamiltonians of arbitrary complexity, which will help validate assumptions regarding local vs. global optimality in lattice models, as well as offer insights into the low-energy behavior of highly frustrated systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube