Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Word Embeddings in Twitter Election Classification (1606.07006v3)

Published 22 Jun 2016 in cs.IR and cs.CL

Abstract: Word embeddings and convolutional neural networks (CNN) have attracted extensive attention in various classification tasks for Twitter, e.g. sentiment classification. However, the effect of the configuration used to train and generate the word embeddings on the classification performance has not been studied in the existing literature. In this paper, using a Twitter election classification task that aims to detect election-related tweets, we investigate the impact of the background dataset used to train the embedding models, the context window size and the dimensionality of word embeddings on the classification performance. By comparing the classification results of two word embedding models, which are trained using different background corpora (e.g. Wikipedia articles and Twitter microposts), we show that the background data type should align with the Twitter classification dataset to achieve a better performance. Moreover, by evaluating the results of word embeddings models trained using various context window sizes and dimensionalities, we found that large context window and dimension sizes are preferable to improve the performance. Our experimental results also show that using word embeddings and CNN leads to statistically significant improvements over various baselines such as random, SVM with TF-IDF and SVM with word embeddings.

Citations (157)

Summary

We haven't generated a summary for this paper yet.