Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning and Word Embeddings for Tweet Classification for Crisis Response (1903.11024v1)

Published 26 Mar 2019 in cs.CL and cs.LG

Abstract: Tradition tweet classification models for crisis response focus on convolutional layers and domain-specific word embeddings. In this paper, we study the application of different neural networks with general-purpose and domain-specific word embeddings to investigate their ability to improve the performance of tweet classification models. We evaluate four tweet classification models on CrisisNLP dataset and obtain comparable results which indicates that general-purpose word embedding such as GloVe can be used instead of domain-specific word embedding especially with Bi-LSTM where results reported the highest performance of 62.04% F1 score.

Citations (30)

Summary

We haven't generated a summary for this paper yet.