Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 87 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 171 tok/s Pro
2000 character limit reached

An artificial neural network to find correlation patterns in an arbitrary number of variables (1606.06564v2)

Published 21 Jun 2016 in cs.LG, q-bio.NC, and stat.ML

Abstract: Methods to find correlation among variables are of interest to many disciplines, including statistics, machine learning, (big) data mining and neurosciences. Parameters that measure correlation between two variables are of limited utility when used with multiple variables. In this work, I propose a simple criterion to measure correlation among an arbitrary number of variables, based on a data set. The central idea is to i) design a function of the variables that can take different forms depending on a set of parameters, ii) calculate the difference between a statistics associated to the function computed on the data set and the same statistics computed on a randomised version of the data set, called "scrambled" data set, and iii) optimise the parameters to maximise this difference. Many such functions can be organised in layers, which can in turn be stacked one on top of the other, forming a neural network. The function parameters are searched with an enhanced genetic algortihm called POET and the resulting method is tested on a cancer gene data set. The method may have potential implications for some issues that affect the field of neural networks, such as overfitting, the need to process huge amounts of data for training and the presence of "adversarial examples".

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube