Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Expansion complexity and linear complexity of sequences over finite fields (1606.06482v1)

Published 21 Jun 2016 in math.NT

Abstract: The linear complexity is a measure for the unpredictability of a sequence over a finite field and thus for its suitability in cryptography. In 2012, Diem introduced a new figure of merit for cryptographic sequences called expansion complexity. We study the relationship between linear complexity and expansion complexity. In particular, we show that for purely periodic sequences both figures of merit provide essentially the same quality test for a sufficiently long part of the sequence. However, if we study shorter parts of the period or nonperiodic sequences, then we can show, roughly speaking, that the expansion complexity provides a stronger test. We demonstrate this by analyzing a sequence of binomial coefficients modulo $p$. Finally, we establish a probabilistic result on the behavior of the expansion complexity of random sequences over a finite field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.