Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fourth-order two-stage explicit exponential integrators for solving differential equations (1606.05417v1)

Published 17 Jun 2016 in math.NA

Abstract: Among the family of fourth-order time integration schemes, the two-stage Gauss--Legendre method, which is an implicit Runge--Kutta method based on collocation, is the only superconvergent. The computational cost of this implicit scheme for large systems, however, is very high since it requires solving a nonlinear system at every step. Surprisingly, in this work we show that one can construct and prove convergence results for exponential methods of order four which use two stages only. Specifically, we derive two new fourth-order two-stage exponential Rosenbrock schemes for solving large systems of differential equations. Moreover, since the newly schemes are not only superconvergent but also fully explicit, they clearly offer great advantages over the two-stage Gauss--Legendre method as well as other time integration schemes. Numerical experiments are given to demonstrate the efficiency of the new integrators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.