Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypercellular graphs: partial cubes without $Q_3^-$ as partial cube minor (1606.02154v3)

Published 7 Jun 2016 in math.CO and cs.DM

Abstract: We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do not contain finite convex subgraphs contractible to the 3-cube minus one vertex $Q-_3$ (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian products of edges and even cycles via successive gated amalgams. This decomposition result enables us to establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as being median-cell -- a property naturally generalizing the notion of median graphs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.