Inequalities on generalized matrix functions (1605.06984v2)
Abstract: We prove inequalities on non-integer powers of products of generalized matrices functions on the sum of positive semi-definite matrices. For example, for any real number $r \in {1} \cup [2, \infty)$, positive semi-definite matrices $A_i,\ B_i,\ C_i\in M_{n_i}$, $i=1,2$, and generalized matrix functions $d_\chi, d_\xi$ such as the determinant and permanent, etc., we have \begin{eqnarray*}&&\left(d_\chi(A_1+B_1+C_1)d_\xi(A_2+B_2+C_2)\right)r \ &&\hskip 1in + \left(d_\chi(A_1)d_\xi(A_2)\right)r + \left(d_\chi(B_1)d_\xi(B_2)\right)r + \left(d_\chi(C_1)d_\xi(C_2)\right)r \ & \ge &\left(d_\chi(A_1+B_1 )d_\xi(A_2+B_2 )\right)r + \left(d_\chi(A_1+ C_1)d_\xi(A_2+ C_2)\right)r + \left(d_\chi( B_1+C_1)d_\xi( B_2+C_2)\right)r\,.\end{eqnarray*} A general scheme is introduced to prove more general inequalities involving $m$ positive semi-definite matrices for $m \ge 3$ that extend the results of other authors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.