Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing minimal free resolutions of right modules over noncommutative algebras (1605.06944v3)

Published 23 May 2016 in math.RA and math.AC

Abstract: In this paper we propose a general method for computing a minimal free right resolution of a finitely presented graded right module over a finitely presented graded noncommutative algebra. In particular, if such module is the base field of the algebra then one obtains its graded homology. The approach is based on the possibility to obtain the resolution via the computation of syzygies for modules over commutative algebras. The method behaves algorithmically if one bounds the degree of the required elements in the resolution. Of course, this implies a complete computation when the resolution is a finite one. Finally, for a monomial right module over a monomial algebra we provide a bound for the degrees of the non-zero Betti numbers of any single homological degree in terms of the maximal degree of the monomial relations of the module and the algebra.

Summary

We haven't generated a summary for this paper yet.