Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal and cellular free resolutions over polynomial OI-algebras (2105.08603v1)

Published 18 May 2021 in math.AC

Abstract: Minimal free resolutions of graded modules over a noetherian polynomial ring have been attractive objects of interest for more than a hundred years. We introduce and study two natural extensions in the setting of graded modules over a polynomial OI-algebra, namely minimal and width-wise minimal free resolutions. A minimal free resolution of an OI-module can be characterized by the fact that the free module in every fixed homological degree, say $i$, has minimal rank among all free resolutions of the module. We show that any finitely generated graded module over a noetherian polynomial OI-algebra admits a graded minimal free resolution, and that it is unique. A width-wise minimal free resolution is a free resolution that provides a minimal free resolution of a module in every width. Such a resolution is necessarily minimal. Its existence is not guaranteed. However, we show that certain monomial OI-ideals do admit width-wise minimal free or, more generally, width-wise minimal flat resolutions. These ideals include families of well-known monomial ideals such as Ferrers ideals and squarefree strongly stable ideals. The arguments rely on the theory of cellular resolutions.

Summary

We haven't generated a summary for this paper yet.