Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The eigenvalues of the sample covariance matrix of a multivariate heavy-tailed stochastic volatility model (1605.02563v1)

Published 9 May 2016 in math.PR

Abstract: We consider a multivariate heavy-tailed stochastic volatility model and analyze the large-sample behavior of its sample covariance matrix. We study the limiting behavior of its entries in the infinite-variance case and derive results for the ordered eigenvalues and corresponding eigenvectors. Essentially, we consider two different cases where the tail behavior either stems from the i.i.d. innovations of the process or from its volatility sequence. In both cases, we make use of a large deviations technique for regularly varying time series to derive multivariate $\alpha$-stable limit distributions of the sample covariance matrix. While we show that in the case of heavy-tailed innovations the limiting behavior resembles that of completely independent observations, we also derive that in the case of a heavy-tailed volatility sequence the possible limiting behavior is more diverse, i.e. allowing for dependencies in the limiting distributions which are determined by the structure of the underlying volatility sequence.

Summary

We haven't generated a summary for this paper yet.