Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The eigenstructure of the sample covariance matrices of high-dimensional stochastic volatility models with heavy tails (2001.04964v1)

Published 14 Jan 2020 in math.PR, math.ST, and stat.TH

Abstract: We consider a $p$-dimensional time series where the dimension $p$ increases with the sample size $n$. The resulting data matrix $X$ follows a stochastic volatility model: each entry consists of a positive random volatility term multiplied by an independent noise term. The volatility multipliers introduce dependence in each row and across the rows. We study the asymptotic behavior of the eigenvalues and eigenvectors of the sample covariance matrix $XX'$ under a regular variation assumption on the noise. In particular, we prove Poisson convergence for the point process of the centered and normalized eigenvalues and derive limit theory for functionals acting on them, such as the trace. We prove related results for stochastic volatility models with additional linear dependence structure and for stochastic volatility models where the time-varying volatility terms are extinguished with high probability when $n$ increases. We provide explicit approximations of the eigenvectors which are of a strikingly simple structure. The main tools for proving these results are large deviation theorems for heavy-tailed time series, advocating a unified approach to the study of the eigenstructure of heavy-tailed random matrices.

Summary

We haven't generated a summary for this paper yet.