Nested Frobenius extensions of graded superrings (1604.08788v2)
Abstract: This paper is the result of a research project completed in the context of the first author's Undergraduate Student Research Award from the Natural Sciences and Engineering Research Council of Canada (NSERC). We prove a nesting phenomenon for twisted Frobenius extensions. Namely, suppose $R \subseteq B \subseteq A$ are graded superrings such that $A$ and $B$ are both twisted Frobenius extensions of $R$, $R$ is contained in the center of $A$, and $A$ is projective over $B$. Our main result is that, under these assumptions, $A$ is a twisted Frobenius extension of $B$. This generalizes a result of Pike and the second author, which considered the case where $R$ is a field.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.