Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Topology and the Kardar-Parisi-Zhang universality class (1604.04790v2)

Published 16 Apr 2016 in cond-mat.stat-mech

Abstract: We study the role of the topology of the background space on the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class. To do so, we study the growth of balls on disordered 2D manifolds with random Riemannian metrics, generated by introducing random perturbations to a base manifold. As base manifolds we consider cones of different aperture angles $\theta$, including the limiting cases of a cylinder ($\theta=0$, which corresponds to an interface with periodic boundary conditions) and a plane ($\theta=\pi/2$, which corresponds to an interface with circular geometry). We obtain that in the former case the radial fluctuations of the ball boundaries follow the Tracy-Widom (TW) distribution of the largest eigenvalue of random matrices in the Gaussian orthogonal ensemble (TW-GOE), while on cones with any aperture angle $\theta\neq 0$ fluctuations correspond to the TW-GUE distribution related with the Gaussian unitary ensemble. We provide a topological argument to justify the relevance of TW-GUE statistics for cones, and state a conjecture which relates the KPZ universality subclass with the background topology.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.