Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometric optics for surface waves in nonlinear elasticity (1604.04546v1)

Published 15 Apr 2016 in math.AP

Abstract: This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. We consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an \emph{approximate} Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which we refer to as "the amplitude equation", is an integrodifferential equation of nonlocal Burgers type. We begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions $u\eps$ to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength $\eps$, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to $u\eps$ on a time interval independent of $\eps$. The paper focuses mainly on the case of Rayleigh waves that are \emph{pulses}, which have profiles with continuous Fourier spectrum, but our method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.