Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative computational identification of a spacewise dependent the source in a parabolic equations (1604.04443v1)

Published 15 Apr 2016 in cs.NA and math.NA

Abstract: Coefficient inverse problems related to identifying the right-hand side of an equation with use of additional information is of interest among inverse problems for partial differential equations. When considering non-stationary problems, tasks of recovering the dependence of the right-hand side on time and spatial variables can be treated as independent. These tasks relate to a class of linear inverse problems, which sufficiently simplifies their study. This work is devoted to a finding the dependence of right-hand side of multidimensional parabolic equation on spatial variables using additional observations of the solution at the final point of time - the final overdetermination. More general problems are associated with some integral observation of the solution on time - the integral overdetermination. The first method of numerical solution of inverse problems is based on iterative solution of boundary value problem for time derivative with non-local acceleration. The second method is based on the known approach with iterative refinement of desired dependence of the right-hand side on spacial variables. Capabilities of proposed methods are illustrated by numerical examples for model two-dimensional problem of identifying the right-hand side of a parabolic equation. The standard finite-element approximation on space is used, the time discretization is based on fully implicit two-level schemes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.