Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving the inverse potential problem in the parabolic equation by the deep neural networks method (2307.14348v1)

Published 8 Jul 2023 in math.NA, cs.NA, math-ph, and math.MP

Abstract: In this work, we consider an inverse potential problem in the parabolic equation, where the unknown potential is a space-dependent function and the used measurement is the final time data. The unknown potential in this inverse problem is parameterized by deep neural networks (DNNs) for the reconstruction scheme. First, the uniqueness of the inverse problem is proved under some regularities assumption on the input sources. Then we propose a new loss function with regularization terms depending on the derivatives of the residuals for partial differential equations (PDEs) and the measurements. These extra terms effectively induce higher regularity in solutions so that the ill-posedness of the inverse problem can be handled. Moreover, we establish the corresponding generalization error estimates rigorously. Our proofs exploit the conditional stability of the classical linear inverse source problems, and the mollification on the noisy measurement data which is set to reduce the perturbation errors. Finally, the numerical algorithm and some numerical results are provided.

Summary

We haven't generated a summary for this paper yet.