Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Lane Keeping Behavior of Visually Distracted Drivers Using Inverse Suboptimal Control (1604.03984v3)

Published 13 Apr 2016 in cs.SY

Abstract: Driver distraction strongly contributes to crash-risk. Therefore, assistance systems that warn the driver if her distraction poses a hazard to road safety, promise a great safety benefit. Current approaches either seek to detect critical situations using environmental sensors or estimate a driver's attention state solely from her behavior. However, this neglects that driving situation, driver deficiencies and compensation strategies altogether determine the risk of an accident. This work proposes to use inverse suboptimal control to predict these aspects in visually distracted lane keeping. In contrast to other approaches, this allows a situation-dependent assessment of the risk posed by distraction. Real traffic data of seven drivers are used for evaluation of the predictive power of our approach. For comparison, a baseline was built using established behavior models. In the evaluation our method achieves a consistently lower prediction error over speed and track-topology variations. Additionally, our approach generalizes better to driving speeds unseen in training phase.

Citations (9)

Summary

We haven't generated a summary for this paper yet.