Context-Aware Quantitative Risk Assessment Machine Learning Model for Drivers Distraction (2402.13421v1)
Abstract: Risk mitigation techniques are critical to avoiding accidents associated with driving behaviour. We provide a novel Multi-Class Driver Distraction Risk Assessment (MDDRA) model that considers the vehicle, driver, and environmental data during a journey. MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous. It offers flexibility in adjusting the parameters and weights to consider each event on a specific severity level. We collect real-world data using the Field Operation Test (TeleFOT), covering drivers using the same routes in the East Midlands, United Kingdom (UK). The results show that reducing road accidents caused by driver distraction is possible. We also study the correlation between distraction (driver, vehicle, and environment) and the classification severity based on a continuous distraction severity score. Furthermore, we apply machine learning techniques to classify and predict driver distraction according to severity levels to aid the transition of control from the driver to the vehicle (vehicle takeover) when a situation is deemed risky. The Ensemble Bagged Trees algorithm performed best, with an accuracy of 96.2%.
- “ADAS — Mobility and transport.” https://ec.europa.eu/transport/road/safety/users/young-people/distraction (accessed May 25, 2021).
- A. S. Kulkarni and S. B. Shinde, “A review paper on monitoring driver distraction in real time using computer vision system”, in Proceedings - 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering, ICEICE 2017, 2017, vol. 2017-Decem, pp. 1-4, doi: 10.1109/ICEICE.2017.8191851.
- R. R. Herrera, C. Holloway, D. Z. Morgado Ramirez, B. Zhang, and Y. Cho, “Breathing Biofeedback Relaxation Intervention for Wheelchair Users in City Navigation,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020, vol. 2020-July, pp. 4575-4578, doi: 10.1109/EMBC44109.2020.9176144.
- P. Ventsislavova and D. Crundall, “The hazard prediction test: A comparison of free-response and multiple-choice formats,” Saf. Sci., vol. 109, pp. 246-255, 2018, doi: 10.1016/j.ssci.2018.06.004.
- T. M. Senserrick, M. J. Kallan, and F. K. Winston, “Child passenger injury risk in sibling versus non-sibling teen driver crashes: A US study,” Inj. Prev., vol. 13, no. 3, pp. 207-210, Jun. 2007, doi: 10.1136/ip.2006.014332.
- C. A. R. Insurance, C. A. R. I. Claims, and B. Y. E. Delbridge, “Causes and Effects of Distracted Driving,” pp. 1-10, 2020, Accessed: May 25, 2021. [Online]. Available: https://www.liveabout.com/causes-and-consequences-of-distracted-driving-527085.
- T. Choudhari and A. Maji, “Risk Assessment of Horizontal Curves Based on Lateral Acceleration Index: A Driving Simulator-Based Study,” Transp. Dev. Econ., vol. 7, no. 1, pp. 1-11, Apr. 2021, doi: 10.1007/s40890-020-00111-2.
- N. Kinnear and A. Stevens, “The battle for attention Driver distraction - a review of recent research and knowledge,” 2015, Accessed: May 25, 2021. [Online]. Available: https://trid.trb.org/view/1377052.
- C. Li, S. H. Chan, and Y. T. Chen, “Who make drivers stop? Towards driver-centric risk assessment: Risk object identification via causal inference,” in IEEE International Conference on Intelligent Robots and Systems, Oct. 2020, pp. 10711-10718, doi: 10.1109/IROS45743.2020.9341072.
- J. Liu, F. Jin, Q. Xie, and M. Skitmore, “Improving risk assessment in financial feasibility of international engineering projects: A risk driver perspective,” Int. J. Proj. Manag., vol. 35, no. 2, pp. 204-211, 2017, doi: 10.1016/j.ijproman.2016.11.004.
- J. L. Yin and B. H. Chen, “An Advanced Driver Risk Measurement System for Usage-Based Insurance on Big Driving Data,” IEEE Trans. Intell. Veh., vol. 3, no. 4, pp. 585-594, 2018, doi: 10.1109/TIV.2018.2874530.
- H. Mao, F. Guo, X. Deng, and Z. R. Doerzaph, “Decision-adjusted driver risk predictive models using kinematics information,” Accid. Anal. Prev., vol. 156, 2021, doi: 10.1016/j.aap.2021.106088.
- A. Tefferi and A. M. Vannucchi, “Genetic Risk Assessment in Myeloproliferative Neoplasms,” Mayo Clinic Proceedings, vol. 92, no. 8. pp. 1283-1290, 2017, doi: 10.1016/j.mayocp.2017.06.002.
- J. D. Paradis, “Reporting on risk: A journalist’s handbook on environmental risk assessment,” J. Crim. Justice, vol. 23, no. 4, p. 391, 1995, doi: 10.1016/0047-2352(95)90043-8.
- K. Berdica, “An introduction to road vulnerability: What has been done, is done and should be done,” Transp. Policy, vol. 9, no. 2, pp. 117-127, 2002, doi: 10.1016/S0967-070X(02)00011-2.
- K. Berdica and L. G. Mattsson, “Vulnerability: A model-based case study of the road network in Stockholm,” in Advances in Spatial Science, no. 9783540680550, Springer International Publishing, 2007, pp. 81-106.
- W. ElDessouki, J. Ivan, and E. Anagnostou, “Using relative risk analysis to improve connecticut freeway traffic safety under adverse weather conditions,” 2004. Accessed: May 25, 2021. [Online]. Available: https://www.researchgate.net/profile/Adel Sadek/publication/242233668 USING RELATIVE RISK ANALYSIS TO IMPROVE CONNECTICUT FREEWAY TRAFFIC SAFETY UNDER ADVERSE WEATHER CONDITIONS/links/56eb0ba508aec6b50016808a.pdf.
- X. Cai, C. Wang, S. Chen, and J. Lu, “Model development for risk assessment of driving on freeway under rainy weather conditions,” PLoS One, vol. 11, no. 2, Feb. 2016, doi: 10.1371/journal.pone.0149442.
- C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep Convolutional Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, 2016, doi: 10.1109/TPAMI.2015.2439281.
- Z. Hu, N. Uchida, Y. Wang, and Y. Dong, “Face orientation estimation for driver monitoring with a single depth camera,” in IEEE Intelligent Vehicles Symposium, Proceedings, Aug. 2015, vol. 2015-Augus, pp. 958-963, doi: 10.1109/IVS.2015.7225808.
- K. Sato, M. Ito, H. Madokoro, and S. Kadowaki, “Driver body information analysis for distraction state detection,” in 2015 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2015, Feb. 2016, pp. 13-18, doi: 10.1109/ICVES.2015.7396886.
- A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Understanding Pedestrian Behavior in Complex Traffic Scenes,” IEEE Trans. Intell. Veh., vol. 3, no. 1, pp. 61-70, Mar. 2018, doi: 10.1109/TIV.2017.2788193.
- N. Das, E. Ohn-Bar, and M. M. Trivedi, “On Performance Evaluation of Driver Hand Detection Algorithms: Challenges, Dataset, and Metrics,” in IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2015, vol. 2015-Octob, pp. 2953-2958, doi: 10.1109/ITSC.2015.473.
- C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8692 LNCS, no. PART 4, pp. 184-199, doi: 10.1007/978-3-319-10593-2 13.
- T. H. N. Le, C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “Robust hand detection in Vehicles,” in Proceedings - International Conference on Pattern Recognition, Jan. 2016, vol. 0, pp. 573-578, doi: 10.1109/ICPR.2016.7899695.
- T. H. N. Le, K. G. Quach, C. Zhu, C. N. Duong, K. Luu, and M. Savvides, “Robust Hand Detection and Classification in Vehicles and in the Wild,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2017, vol. 2017-July, pp. 1203-1210, doi: 10.1109/CVPRW.2017.159.
- B. Kapitaniak, M. Walczak, M. Kosobudzki, Z. Jóźwiak, and A. Bortkiewicz, “Application of eye-tracking in drivers testing: A review of research,” International Journal of Occupational Medicine and Environmental Health, vol. 28, no. 6. pp. 941-954, 2015, doi: 10.13075/ijomeh.1896.00317.
- W. Yuan, Z. Liu, and R. Fu, “Predicting drivers’ eyes-off-road duration in different driving scenarios,” Discret. Dyn. Nat. Soc., vol. 2018, 2018, doi: 10.1155/2018/3481628.
- B. G. Simons-Morton, F. Guo, S. G. Klauer, J. P. Ehsani, and A. K. Pradhan, “Keep your eyes on the road: Young driver crash risk increases according to duration of distraction,” J. Adolesc. Heal., vol. 54, no. 5 SUPPL., pp. S61-S67, 2014, doi: 10.1016/j.jadohealth.2013.11.021.
- P. Doshi, D. Kapur, R. Iyer, and A. Chatterjee, “Smart mobility: Algorithm for road and driver type determination,” in 2017 IEEE Transportation Electrification Conference, ITEC-India 2017, Apr. 2018, vol. 2018-Janua, pp. 1-4, doi: 10.1109/ITEC-India.2017.8333895.
- C. Chai, R. Zhao, J. Shi, J. Zhou, and Z. Yang, “The effect of road environment and type of vehicles on road rage in China,” in Proceedings - 2019 12th International Symposium on Computational Intelligence and Design, ISCID 2019, 2019, pp. 200-203, doi: 10.1109/ISCID.2019.10129.
- J. E. Meseguer, C. T. Calafate, J. C. Cano, and P. Manzoni, “DrivingStyles: A smartphone application to assess driver behavior,” in Proceedings - International Symposium on Computers and Communications, 2013, pp. 535-540, doi: 10.1109/ISCC.2013.6755001.
- A. Rakotonirainy, “Design of context-aware systems for vehicles using complex system paradigms,” in CEUR Workshop Proceedings, 2005, vol. 158, Accessed: May 25, 2021. [Online]. Available: http://eprints.qut.edu.au.
- I. Khan and S. Khusro, “Towards the Design of Context-Aware Adaptive User Interfaces to Minimize Drivers’ Distractions,” Mob. Inf. Syst., vol. 2020, 2020, doi: 10.1155/2020/8858886.
- X. Jianfeng, G. Hongyu, T. Jian, L. Liu, and L. Haizhu, “A classification and recognition model for the severity of road traffic accident,” Eco-Mobility Futur. Cities-Research Artic. Adv. Mech. Eng., vol. 11, no. 5, pp. 1-8, May 2019, doi: 10.1177/1687814019851893.
- F. Malin, I. Norros, and S. Innamaa, “Accident risk of road and weather conditions on different road types,” Accid. Anal. Prev., vol. 122, pp. 181-188, Jan. 2019, doi: 10.1016/j.aap.2018.10.014.
- L. A. Sherretz and B. C. Farhar, “An Analysis of the Relationship Between Rainfall and the Occurrence Of Traffic Accidents,” J. Appl. Meteorol., vol. 17, no. 5, pp. 711-715, 1978, doi: 10.1175/1520-0450(1978)017¡0711:aaotrb¿2.0.co;2.
- R. Bergel-Hayat, M. Debbarh, C. Antoniou, and G. Yannis, “Explaining the road accident risk: Weather effects,” Accid. Anal. Prev., vol. 60, pp. 456-465, 2013, doi: 10.1016/j.aap.2013.03.006.
- H. Brodsky and A. S. Hakkert, “Risk of a road accident in rainy weather,” Accid. Anal. Prev., vol. 20, no. 3, pp. 161-176, 1988, doi: 10.1016/0001-4575(88)90001-2.
- “2-Second Rule for Distracted Driving Can Mean Life or Death - The New York Times.” https://www.nytimes.com/2018/09/27/business/distracted-driving-auto-industry.html (accessed May 25, 2021).
- C. Wu, D. Yu, A. Doherty, T. Zhang, L. Kust, and G. Luo, “An investigation of perceived vehicle speed from a driver’s perspective,” PLoS One, vol. 12, no. 10, Oct. 2017, doi: 10.1371/journal.pone.0185347.
- E. de Bellis, M. Schulte-Mecklenbeck, W. Brucks, A. Herrmann, and R. Hertwig, “Blind haste: As light decreases, speeding increases,” PLoS One, vol. 13, no. 1, Jan. 2018, doi: 10.1371/journal.pone.0188951.
- A. Bener, T. Özkan, and T. Lajunen, “The Driver Behaviour Questionnaire in Arab Gulf countries: Qatar and United Arab Emirates,” Accid. Anal. Prev., vol. 40, no. 4, pp. 1411-1417, 2008, doi: 10.1016/j.aap.2008.03.003.
- A. Mishra and P. Bajaj, “Driver’s Behaviour Monitoring on Urban Roads of a Tier 2 City in India,” in International Conference on Emerging Trends in Engineering and Technology, ICETET, Mar. 2016, vol. 2016-March, pp. 134-140, doi: 10.1109/ICETET.2015.13.
- A. Kumar and R. Patra, “Driver drowsiness monitoring system using visual behaviour and machine learning,” in ISCAIE 2018 - 2018 IEEE Symposium on Computer Applications and Industrial Electronics, 2018, pp. 339-344, doi: 10.1109/ISCAIE.2018.8405495.
- E. S. Lee and D. Kum, “Feature-based lateral position estimation of surrounding vehicles using stereo vision,” in IEEE Intelligent Vehicles Symposium, Proceedings, Jul. 2017, pp. 779-784, doi: 10.1109/IVS.2017.7995811.
- D. Xu, H. Zhao, F. Guillemard, S. Geronimi, and F. Aioun, “Scene-Aware driver state understanding in car-following behaviors,” in IEEE Intelligent Vehicles Symposium, Proceedings, Jul. 2017, pp. 1490-1496, doi: 10.1109/IVS.2017.7995920.
- U. Mittal, R. Potnuru, and P. Chawla, “Vehicle Detection and Classification using Improved Faster Region Based Convolution Neural Network,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020, pp. 511-514, doi: 10.1109/ICRITO48877.2020.9197805.
- J. Gong, J. Zhao, F. Li, and H. Zhang, “Vehicle detection in thermal images with an improved yolov3-tiny,” in Proceedings of 2020 IEEE International Conference on Power, Intelligent Computing and Systems, ICPICS 2020, 2020, pp. 253-256, doi: 10.1109/ICPICS50287.2020.9201995.
- R. A. Kharjul, V. K. Tungar, Y. P. Kulkarni, S. K. Upadhyay, and R. Shirsath, “Real-Time pedestrian detection using SVM and AdaBoost,” in International Conference on Energy Systems and Applications, ICESA 2015, 2016, pp. 740-743, doi: 10.1109/ICESA.2015.7503447.
- K. Tateiwa and K. Yamada, “Estimating driver awareness of pedestrians in crosswalk in the path of right or left turns at an intersection from vehicle behavior,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2015, vol. 2015-Augus, pp. 952-957, doi: 10.1109/IVS.2015.7225807.
- K. Tateiwa, A. Nakamura, and K. Yamada, “Study on estimating driver awareness of pedestrians while turning right at intersection based on vehicle behavior utilizing driving simulator,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2016, vol. 2016-Augus, pp. 388-393, doi: 10.1109/IVS.2016.7535415.
- A. Rangesh, O. B. Eshed, K. Yuen, and M. M. Trivedi, “Pedestrians and their phones - Detecting phone-based activities of pedestrians for autonomous vehicles,” in IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2016, pp. 1882-1887, doi: 10.1109/ITSC.2016.7795861.
- P. Polack, F. Altche, B. DAndrea-Novel, and A. De La Fortelle, “The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 812-818, doi: 10.1109/IVS.2017.7995816.
- D. D. Clarke, P. Ward, C. Bartle, and W. Truman, “Young driver accidents in the UK: The influence of age, experience, and time of day,” Accid. Anal. Prev., vol. 38, no. 5, pp. 871-878, Sep. 2006, doi: 10.1016/j.aap.2006.02.013.
- A. F. Williams, “Teenage drivers: Patterns of risk,” in Journal of Safety Research, Jan. 2003, vol. 34, no. 1, pp. 5-15, doi: 10.1016/S0022-4375(02)00075-0.
- D. Sommer and M. Golz, “Evaluation of PERCLOS based current fatigue monitoring technologies,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 2010, pp. 4456-4459, doi: 10.1109/IEMBS.2010.5625960.
- H. Ginting, G. Näring, and E. S. Becker, “Attentional bias and anxiety in individuals with coronary heart disease,” Psychol. Heal., vol. 28, no. 11, pp. 1306-1322, Nov. 2013, doi: 10.1080/08870446.2013.803554.
- O. Lopez-Fernandez, M. Freixa-Blanxart, and M. L. Honrubia-Serrano, “The problematic internet entertainment use scale for adolescents: Prevalence of problem internet use in Spanish high school students,” Cyberpsychology, Behav. Soc. Netw., vol. 16, no. 2, pp. 108-118, Feb. 2013, doi: 10.1089/cyber.2012.0250.
- G. B. Casal, J. Carlos, S. Normas, P. La, and D. E. C. Cl, “International Journal of Clinical and Health Psychology,” International Journal of Clinical and Health Psychology, vol. 2, no. 1. pp. 525-532, 2002, Accessed: May 25, 2021. [Online].
- T. C. CHIVERS, W. J. ROGERS, and M. E. WILLIAMS, “A TECHNIQUE FOR THE MEASUREMENT OF GAS-LEAKAGE.,” psycnet.apa.org. 1974, Accessed: May 25, 2021. [Online]. Available: https://psycnet.apa.org/record/1933-01885-001.
- C. León-Mantero, J. C. Casas-Rosal, C. Pedrosa-Jesús, and A. Maz-Machado, “Measuring attitude towards mathematics using Likert scale surveys: The weighted average,” PLoS One, vol. 15, no. 10 October, Oct. 2020, doi: 10.1371/journal.pone.0239626.
- J. F. Liu, Y. F. Su, M. K. Ko, and P. N. Yu, “Development of a vision-based driver assistance system with lane departure warning and forward collision warning functions,” in Proceedings - Digital Image Computing: Techniques and Applications, DICTA 2008, 2008, pp. 480-485, doi: 10.1109/DICTA.2008.78.
- “TeleFOT - UK DFOT3 - FOT-Net WIKI.” https://wiki.fot-net.eu/index.php/TeleFOT - UK DFOT3 (accessed May 25, 2021).
- M. M. Kunt, I. Aghayan, and N. Noii, “Prediction for traffic accident severity: Comparing the artificial neural network, genetic algorithm, combined genetic algorithm and pattern search methods,” Transport, vol. 26, no. 4, pp. 353-366, Dec. 2011, doi: 10.3846/16484142.2011.635465.
- J. Morton, T. A. Wheeler, and M. J. Kochenderfer, “Analysis of Recurrent Neural Networks for Probabilistic Modeling of Driver Behavior,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1289-1298, 2017, doi: 10.1109/TITS.2016.2603007.
- M. Zhu, Y. Li, and Y. Wang, “Design and experiment verification of a novel analysis framework for recognition of driver injury patterns: From a multi-class classification perspective,” Accid. Anal. Prev., vol. 120, pp. 152-164, Nov. 2018, doi: 10.1016/j.aap.2018.08.011.
- Y. Ma, G. Gu, B. Yin, S. Qi, K. Chen, and C. Chan, “Support vector machines for the identification of real-time driving distraction using in-vehicle information systems,” J. Transp. Saf. Secur., 2020, doi: 10.1080/19439962.2020.1774019.
- T. Liu, Y. Yang, G. Bin Huang, Y. K. Yeo, and Z. Lin, “Driver Distraction Detection Using Semi-Supervised Machine Learning,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1108-1120, Apr. 2016, doi: 10.1109/TITS.2015.2496157.