Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on badly approximabe sets in projective space (1604.00765v1)

Published 4 Apr 2016 in math.NT and math.DS

Abstract: Recently, Ghosh & Haynes \cite{HG} proved a Khintchine-type result for the problem of Diophantine approximation in certain projective spaces. In this note we complement their result by observing that a Jarn\'{\i}k-type result also holds for badly approximable' points in real projective space. In particular, we prove that the natural analogue in projective space of the classical set of badly approximable numbers has full Hausdorff dimension when intersected with certain compact subsets of real projective space. Furthermore, we also establish an analogue of Khintchine's theorem for convergence relating tointrinsic' approximation of points in these compact sets.

Summary

We haven't generated a summary for this paper yet.