Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on three problems in metric Diophantine approximation (1309.2414v1)

Published 10 Sep 2013 in math.NT

Abstract: The use of Hausdorff measures and dimension in the theory of Diophantine approximation dates back to the 1920s with the theorems of Jarnik and Besicovitch regarding well-approximable and badly-approximable points. In this paper we consider three inhomogeneous problems that further develop these classical results. Firstly, we obtain a Jarnik type theorem for the set of multiplicatively approximable points in the plane. This Hausdorff measure statement does not reduce to Gallagher's Lebesgue measure statement as one might expect and is new even in the homogeneous setting. Next, we establish a Jarnik type theorem for the set of multiplicatively approximable points on a non-degenerate planar curve. This completes the Hausdorff theory for planar curves. Finally, we show that the set of simultaneously inhomogeneously (i,j)-badly approximable points in the plane is of full dimension. The underlying philosophy behind the proof has other applications; e.g. towards establishing the inhomogeneous version of Schmidt's Conjecture. The higher dimensional analogues of the planar results are also discussed.

Summary

We haven't generated a summary for this paper yet.