Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

A latent-observed dissimilarity measure (1603.09254v1)

Published 30 Mar 2016 in stat.ML

Abstract: Quantitatively assessing relationships between latent variables and observed variables is important for understanding and developing generative models and representation learning. In this paper, we propose latent-observed dissimilarity (LOD) to evaluate the dissimilarity between the probabilistic characteristics of latent and observed variables. We also define four essential types of generative models with different independence/conditional independence configurations. Experiments using tractable real-world data show that LOD can effectively capture the differences between models and reflect the capability for higher layer learning. They also show that the conditional independence of latent variables given observed variables contributes to improving the transmission of information and characteristics from lower layers to higher layers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)